
Fault Tolerant Finite State Control
using Low Density Parity Checking

ghoover@engineering.ucsb.edu, forrest@ece.ucsb.edu
Department of Electrical and Computer Engineering

University of California, Santa Barbara

Abstract
Digital technology in space-bound, nanometer scale

systems create the need for reliable computation in the face
of a small but finite error rate. We present a designer-
driven, semi-automated technique for synthesizing fault tol-
erance in finite state machines. This is done with lower
implementation overhead in terms of both machine redun-
dancy and overall logic complexity than conventional meth-
ods. We further show that it is possible to generate efficient
encodings that inherently provide tolerance to constant er-
ror rates in excess of one error per cycle and, through the
use of a high level description language (HDL), can be per-
formed with turn-key simplicity. The technique is demon-
strated in the design of a practical multi-threaded micro-
processor engineered specifically for real-time and high
bandwidth control. Comparison between the basic and fault
tolerant versions shows that as large as 18% error rates can
be recovered with minimal space overhead and almost no
additional delay.

1 Introduction

Fault tolerance forms the foundation for critical systems,
providing reliable computation and control in a broad range
of applications. The importance of such systems is of long-
standing recognition, having been a major area of interest
for aerospace and military applications. Space-bound appli-
cations typify the necessity for dependable systems, operat-
ing in environments characterized by levels of radiation eas-
ily capable of disrupting normal machine behavior. In such
systems, high levels of redundancy are achieved through
replication of system components, greatly increasing imple-
mentation complexity and cost. These levels of redundancy
are not uncommon in non-space-bound applications where
the cost of human life must outweigh the cost of system de-
velopment. For example, the flight control system for the
Airbus A330/340 contains 3 primary flight control comput-
ers and 2 backups, supporting quintuple redundancy. Even
with extreme levels of redundancy it is not uncommon in

applications, such as deep space reconnaissance, for sys-
tems to shutdown as they pass through regions character-
ized by large radioactive activity. The Van Allen Belt is one
such well known region of space, where unpredictable sys-
tem behavior has the potential to jeopardize mission success
by turning on conflicting devices.

The need for fault tolerant systems in terrestrial applica-
tions is of growing importance. Unpredictability in system
design, manufacture, and operation is of critical importance
to the population that these systems affect. Whether con-
trolling distribution of power amongst city grids, coordi-
nating travel through traffic lights, or supporting the lives
of patients in the ICU, control systems affect our lives on
a daily basis. High expectations rest on these systems to
provide their services without interruption and in a variety
of environments. Continuing progress in electronic fabri-
cation technologies will inevitably cause unpredictability
in system behavior, as local radiation phenomena begin to
plague systems in all applications and with greater impact.
With shrinking feature sizes in integrated circuit technology
comes the increased potential for multiple faults originating
from a single source.

While dependability of electronic systems has been a
concern for many years, progress in finite-state controller
fault tolerance has been limited. This is despite the fact
that faults in machine control often have a more significant
impact on system execution than a similar data fault. This
observation is likely based on the ad-hoc means by which
most finite-state controllers are designed. In particular,the
vast majority of FSM synthesis work describes mechanisms
to minimize the information redundance in a design, often
at the cost of increasing both design gate complexity and
delay. On the other hand, data-path reliability techniques
have benefited from techniques for developed for reliable
communication in the face of noisy physical channels. Re-
search in these areas has generated error detection and cor-
rection (EDC) strategies capable of providing excellent er-
ror resilience with acceptable overhead. Finite state control,
however, presents a different problem since delay overhead
in such control is nearly always on the implementaition crit-

ical path. Further, analysis of the reachable states of a prac-
tical impelmentation indicate that the set of valid states is
in general rather sparse– creating an opprotunity for custom
encodings and alternative solutions to single event fault tol-
erance.

Central to the discussion of fault tolerant techniques is
the notion of the targeted fault model. The single event
upset (SEU) model is commonly accepted as a reasonable
representation of expected error rates. This model provides
that an occurring fault will cause errors in as many as one bit
per cycle. While this may underestimate the true error rates
occurring in even current technology, we use it as a founda-
tion, aiming to provide SEU tolerance at a minimum. While
the model focuses on errors in terms of storage elements, or
bits, it is also possible that faults occur in the underlying
logic. We assume, however, that this logic is static and that
its output is eventually correct. Thus we target likely error
scenarios where a delay or noise pulse prevents the correct
output from being stored.

Conventional control techniques aim to curb the severity
of faults in system execution by adding limited redundancy
capable of both identifying and correcting a small number
of faults. While effective in environments characterized by
low error-rates, these techniques generally suffer from high
cost in terms of both logic area and performance. Systems
capable of correct execution in high error rate environments
have yet to surface; most current implementations are de-
signed to shut down in such environments. Shrinking fea-
ture sizes in integrated circuits (IC) raises concern aboutthe
effects of terrestrial radiation on future electronics andthe
severity of such interactions given that the source of a fault
may disrupt a greater number of circuits. At the same time
circuit scaling reduces the number of electrons used for sig-
naling in modern designs. This increases the sensitivity of
such systems to secondary radiation induction fault mech-
anisms such as substrate bias faults and induced timing er-
rors.

This paper presents several novel techniques for synthe-
sizing a range of FSM controllers that trade off implemen-
tation overhead with levels of fault tolerance. Through use
of a subset of low density parity check (LDPC) codes (Sec-
tion 2.1), we provide a low cost strategy capable of pro-
viding tolerance levels exceeding conventional (TMR/Ham-
ming) techniques. At the local level our technique provides
constant single error rate recovery such that error detec-
tion and correction occur transparently to machine execu-
tion. This technique is further enhanced by partitioning the
state space, reducing logic complexity and increasing the
total sustainable error rate given uniform error distribution.
Optimizations in the fault tolerant construction reduce the
overhead of logic complexity and take advantage of spar-
sity in the control encoding. At the local level, our tech-
nique is well suited for dense encodings as well as sparse,

with worst case overhead better than that of a 1/2-rate code.
Higher error rate environments benefit from a second level
of checking capable of distinguishing multi-bit errors from
single-bit errors with high probability and utilizes a novel
decoding technique which takes advantage of both the spar-
sity and distance of state codewords.

We show that adding fault tolerance at the local level
does not significantly impact area or performance and can
achieve levels of machine resilience equal to or greater than
conventional techniques. We further show that recovery of
constant single error rates can be trivially provided to any
control encoding, and that by trading off overhead in state
size, we can generate control structures with very low per-
formance overhead. Using the PyPBS specification tool we
generate control structures for a multi-threaded processor
that are well suited for application of our fault tolerant tech-
niques and show that constant error rates as large as 18%
of the state space can be transparently corrected in the FSM
control logic. The remainder of this paper is organized as
follows: Section 2 presents motivation for and related work
pertaining to fault tolerant controllers, and relevant back-
ground on LDPC codes and the PyPBS specification lan-
guage. Section 3 outlines both our local and global fault
tolerant techniques, their unique decoding methods, and op-
timizations. Results for both the local and combined strate-
gies are presented in Section 4, including relevant detailsof
the demonstration processor design. Section 5 gives con-
cluding remarks.

2 Motivation

Current techniques such as Hamming codes and triple-
modular redundancy (TMR) are ill suited to provide the
necessary levels of fault tolerance at a reasonable cost while
maintaining acceptable performance levels. Prevalent tech-
niques in the corresponding data-oriented arenas of fault
tolerance have generated many ideas about application of
error detection and correction schemes to system control
but have often been at odds with the complexity inherent
in implementations of many EDC codes. Hamming codes
for instance, have been employed in the Single Indepen-
dent Decoder (SID) architecture [9]. Each syndrome bit of
a Hamming code, however, requires 1/2 of the codeword re-
sulting in implementations that requireN/2−1 binary XOR
gates. The logic tree for each of these parity bits has depth
log2N− 1 and there arelog2N such trees for single error
correction (SEC).

.
The prevailing technique, triple-modular redundancy

(TMR), aims to provide reliable execution under the single
event upset (SEU) model through 3x replication of system
components. This technique can be implemented at various
levels, creating redundancy at the architectural level down

to gate level [6]. In this scheme, performance penalties in-
clude the redundant voting circuitry, which functions after
the computation is complete. A more substantial area over-
head stems from the 3x replication of components and the
necessary voting logic. While single faults can be identified
and removed, this technique does not lend well to multi-
fault events unless all faults occur within the same copy.
The level of fault tolerance hardly mitigates the area over-
head, forcing many systems to implement only partial-TMR
schemes on critical components.

Drawing from technology in EDC codes, high level syn-
thesis, and fault tolerant design, our technique aims to ap-
ply existing techniques in a novel way to achieve levels
of fault tolerance superior to those available using conven-
tional methods. Through use of a subset of low-density
parity-check (LDPC) codes, we provide low-cost redun-
dancy capable of correcting constant error rates in a man-
ner transparent to machine behavior. Through use of the
high level synthesis language PyPBS, we are able to quickly
and automatically generate fault tolerant constructions that
benefit from sparse encodings and optimization capabilities
inherent in the language. The remainder of this section pro-
vides background on LDPC codes, their prevailing encod-
ing and decoding strategies, and the PyPBS language.

2.1 Low Density Parity Check Codes

Originally conceived in 1960, low density parity check
(LDPC) codes fell out of attention for many years due to
the computational effort involved in encoder and decoder
implementations [4]. In roughly the last decade these codes
have experienced a dramatic comeback offering both encod-
ing and decoding algorithms with linear time complexity
and efficiency near the Shannon limit [10]. A low-density
parity-check code (or Gallager code) is a block code that has
a parity-check matrix, H, every row and column of which
is “sparse” [7]. Valid codewords satisfy the requirement
that all check nodes are of even parity. Regular Gallager
codes are low-density parity-check codes that satisfy the
constraint that every row of H has the same weight k and
every column of H has the same weight j (Figure 2). Fig-
ure 1 illustrates an LDPC matrix H and its corresponding
check functions. It has been shown that efficient Gallager
codes are easily found at random subject to constraints j
and k. Irregular LDPC codes have been shown to provide
better efficiency than regular codes with some added com-
plexity [5].

2.1.1 LDPC Encoding

Encoding of LDPC codes is generally performed by as-
signing message bits to variables nodes and calculating the
missing values for the remaining nodes. While a simple

solution is achieved by solving the parity check equations,
this method involves the whole parity-check matrix and
has complexity quadratic in the block length [4]. By rear-
ranging the parity-check matrix into an approximate lower-
triangular form, it is possible to use six submatrices of H
to perform encoding in near linear time [8]. Certain classes
of LDPC codes give way to linear encoding complexity by
maintaining column weights of 2 or less. These staircase
codes, while trivially solvable, add acceptable levels of re-
dundancy at rates of 1/2 or better.

2.1.2 LDPC Decoding

LDPC codes exhibit excellent efficiency provided an op-
timal decoder exists. In general, decoding LDPC codes
is NP-complete and work thus far has yet to discover an
optimal algorithm [7]. Several decoding strategies exist,
however, that provide excellent error correction given suf-
ficient processing. The most effective algorithms are mes-
sage passing algorithms that implement a variation of be-
lief propagation. Such algorithms have been shown to pro-
vide complete correction of 1/2 rate codes with 7.5% added
noise [7].

While effective in correcting large error rates, belief
propagation (or soft-decision) decoding is an iterative pro-
cess requiring floating-point precision to achieve efficiency
near the channel limit. In his original work, Gallager pre-
sented a simple decoding method for binary symmetric
channels (BSC) at rates far below channel capacity [1]. In
this algorithm, parity checks are computed and any message
node that is contained in more than some threshold number
of erroneous check nodes is flipped. This hard-decision de-
coding scheme can benefit from multiple iterations, poten-
tially correcting multiple bit errors with reduced computa-
tion complexity.

2.2 PyPBS

PyPBS is a high level synthesis language targeted for
specification of sequential designs. The language syntax
draws from the compact and expressive nature of regular
expressions, while providing a modular framework to facil-
itate design and integration goals. The language focus is
expressiveness of the specification limited by simplicity of
hardware implementation. The rationale for these choices
stem from the practical issues of constrained hardware de-
sign where a designer commonly works with a rather re-
strictive set of sequential constraints– memory protocols,
interfaces, and previously constructed designs. PyPBS al-
lows the designer to develop designs within such constraints
in an incremental and applicative way.

Machine semantics follow from a non-deterministic fi-
nite automaton (NFA) model whereby execution is assumed

Figure 1. Low Density Parity Check Code: H
matrix and check functions

Figure 2. Low Density Parity Check Code: A
graphical view

to be as general as possible, making PyPBS a natural fit
for specification of sequential protocols and pipeline struc-
tures [2]. While PyPBS machine encodings are typically
register-heavy, they prove to be well suited for high perfor-
mance designs and not uncharacteristically large for designs
generated from high level languages. These sparse encod-
ings offer unique opportunities for optimization while al-
lowing use of an applicative synthesis technique that lim-
its the scope of design circuit changes for corresponding
changes in the control hierarchy.

3 Technique

Adding fault tolerance to control structures using con-
ventional techniques has proven to be a daunting task,
generally requiring significant overhead and performance
degradation. In this section we outline our local and global
techniques, and discuss how the unique properties of state
machines are used to reduce complexity and overhead. We
emphasize the ability to generate a family of behaviorally
equivalent machines that trade off levels of fault tolerance,
performance, and area.

3.1 Local Fault Tolerant Construction

A state machine can be described as a set of state bits and
their corresponding transition functions. These functions
generate the valid states for the machine behavior, effec-
tively decoding the current state and performing translation
based on machine inputs. Through addition of a small layer
of decoding logic to these functions, we can achieve reliable
single error correction at low-cost in terms of both area and
performance. Logic integration in this way provides error
correction transparently to machine execution, but requires
that the logic depth not be significantly impacted as to not
affect performance.

LDPC codes provide the unique ability to encode and de-
code at low cost, requiring shallow gate depths and constant
time complexity. To achieve these requirements, a subset
of LDPC codes called staircase codes is employed. These
codes effectively add redundant parity bits, creating a sys-
tematic code thereby reducing both encoding and decoding
effort. Integration of encoding and machine functionality
result in implementations with nearly zero encoding over-
head.

Constructing the additional logic layer follows from gen-
eration of a parity-check matrix subject to constraints, ad-
dition of parity-check equations and necessary redundant
state bits, and addition of a constant time, hard-decision de-
coder. For performance-driven designs, this layer is often
implemented using logic only three gates deep with two and
three input gates. Within this logic layer three sub-layers
exist providing calculation of check functions, error detec-
tion, and error correction respectively.

3.1.1 Parity-Check Matrix Generation

The parity-check matrix is the combination of two matri-
ces: D which describes the interconnection of check nodes
and message nodes and P which specifies the connections of
added parity nodes. Matrix D is created subject to heuristics
specified in Figure 3, while P is trivially represented by a
square matrix with ones along the main diagonal. Through
manipulation of these heuristics it is possible to generate
equivalent machines that trade off logic complexity with the
number of added parity bits.

A parity-check matrix of height|c| and width|v|+ |c| im-
plements a code of rate|v|/(|v|+ |c|). The upper bound for
this rate is determined by the lower bound of|c| such that
the number of unique combinations is greater than or equal
to |v|+ |c| (Heuristic 2). By requiring that connections be-
tween check nodes and parity nodes be of weight one, all
single errors occurring in these bits appear as a single unsat-

Heuristic Description
w = |v| = |delta| width is number of state bits
w = |v| ≤ f act(|c|)/((f act(degc−1)∗ f act(|c|−degc−1)) the number of combinations of|c| checks of degreedegc
degv ≥ 2 message node degree greater than or equal to 2
ci 6= c j∀ci ,c j ∈ c all check node functions are unique
vi 6= v j∀vi ,v j ∈ v all message nodes connect to unique check node set

Figure 3. Parity-check matrix construction heuristics

isfied check node. To disambiguate errors in message nodes
from those in parity nodes it must hold that each message
node be of degree greater than one (Heuristic 3). Heuristic 4
ensures that no two check nodes implement the same func-
tion, while Heuristic 5 provides unambiguous identification
of errors in any bit.

With a check node degree of three, these heuristics
provide single error identification using two-input gates,
with minimal logic complexity and maximal performance.
While accurate determination of the lower bound of|c| re-
quires factorial calculations based on the number of mes-
sage nodes and the degree of check nodes, it can be esti-
mated byceil(log2|v|). Variation of check node degree di-
rectly effects the degree of message nodes, impacting logic
complexity of check calculations as well as fault identifica-
tion.

3.1.2 Satisfying Parity Function Constraints

While increasing the number of check functions serves to
reduce logic complexity, each function incurs the cost of
an additional parity bit for satisfying its function. When
the transition functions for the state machine are known, it
is possible to compute unique transition functions for each
of these added parity bits rather than cascade logic on top
of the existing circuits. In this way, we aim to alleviate
the encoding time by computing parity values in parallel
with next state functions. The complexity of these functions
varies greatly depending on the functionality of the machine
and the designated connections between message and check
nodes. In general, reduced complexity in parity functions
can be achieved through a reduction in the degree of the
check node. Several optimizations exist for reducing both
the logic complexity and parity bit overheads.

3.1.3 Fault Identification and Correction

Unambiguous identification of faults is possible only when
all single faults sponsor unique patterns of satisfied check
nodes. As described in prior sections, generation of the
parity-check matrix ensures that this constraint hold and
that the complexity of such identification is a function of the
degree of each check node. Gallager’s simplistic decoding

method as presented in Section 2.1.2 serves as the basis for
identifying and correcting faults in the construction. Rather
than use a threshold mechanism to identify the fault, we use
the fact that each fault creates a unique pattern that can be
statically decoded. By maintaining small node degrees for
all message nodes, we ensure that the complexity of this
decoding is small. The designer can optionally specify that
a dense encoding is desired, resulting in a complete binary
decoding of the|c| bits. It should be noted that some 2-bit
error scenarios can also be recovered with local redundancy.
Correction of 2-bit errors occurs when both bits generate
non-overlapping output patterns for check functions. This
is possible because only partial cubes are used for identify-
ing bit errors, therefore any two disjoint patterns are capable
of simultaneously correcting two errors.

Fault correction is trivially recognized by an XOR gate
used to flip the erroneous bit as identified by the fault iden-
tification logic. Figure 4 illustrates the relationship between
message and check nodes, fault identification decoding, and
fault correction. Equivalence between basic and fault toler-
ant implementations can be guaranteed, as no modifications
to the behavioral logic are performed. Optimizations to this
structure exist for reducing logic complexity of fault identi-
fication and correction logic.

3.2 State Space Partitioning

The technique described above corrects single faults at
constant rates without significantly impacting system per-
formance. This is only the case if locality and message
size are restricted such that wire length and fanin do not
dominate the construction. For large state vectors, the
cost of both interconnect and logic complexity become pro-
hibitive. Partitioning the state vector provides small local
logic blocks and increases fault coverage. Each local block
benefits from low-cost single error recovery, thereby in-
creasing the total coverage to k errors per cycle for k blocks.
While rates of k errors per cycle can only be successfully
handled given uniform error distribution among blocks, it
is possible to increase the likelihood of such occurrence
through use of interleaved partitioning. In an interleaved
partitioning, localized multi-bit faults are distributedamong
local blocks thereby increasing the probability that they can

Figure 4. Error detection and correction cir-
cuits

B l o c k 1 B l o c k 2 B l o c k 3
Figure 5. Interleaved partitioning

be successfully recovered (Figure 5).

The state partitioning has direct consequences on the
area overhead of each local block, and hence the total de-
sign. Since the number of message bits that can be unam-
biguously identified grows exponentially with the number
of check functions, it is apparent that larger blocks result
in more efficient usage of added parity bits. A single par-
tition, for instance, provides the best efficiency in terms of
added parity bits, but suffers from poor performance due to
wire length and logic complexity. Example partitionings of
a state vector with 33 bits are shown in Figure 6, outlining
the number of partitions, their respective sizes, the required
overhead in terms of added parity bits, and the resulting
number of per-cycle errors that can be tolerated. The par-
tition sizes shown are chosen to maximize space efficiency
given that message nodes are of degree two. Though there
exists a broad range of acceptable partitionings, we target
performance driven designs and as such attempt to partition
the design into equal blocks of length 10 (6 message bits/4
parity bits).

Partitions Sizes Overhead Faults
1 1 x 33 9 1
2 1 x 28, 1 x 6 12 2
3 2 x 15, 1 x 3 15 3
4 3 x 10, 1 x 3 18 4
5 4 x 6, 1 x 9 21 5
6 5 x 6, 1 x 3 23 6

Figure 6. Partitioning options for a 33 bit state
vector

3.3 Optimization

Several optimizations exist for simplifying logic and re-
ducing the overhead of added parity bits. By simply noting
that all parity functions are regenerated on each cycle and
are unused as inputs to machine behavior, we can safely
remove both their associated fault identification and correc-
tion logic. The required decoding logic is thus reduced by
nearly a factor of two for those stages.

Optimizations for sparse state encodings allow logic re-
duction at several levels. Through reachable state analysis
it is possible to identify message bits whose parity com-
binations always satisfy the even-parity constraint. Parity
bits for these functions are then unnecessary and can be re-
moved from the construction. More common, however, is
the ability to reduce logic complexity of check functions
and fault identification logic. Sparsity in both of these en-
codings can help to streamline logic and reduce overhead.

3.4 Non-local Fault Tolerant Construction

Fault detection and correction for multiple faults in a sin-
gle local block proves to be challenging, requiring greater
overhead and increased performance impact. By taking ad-
vantage of redundancy in local blocks, however, we are able
to provide greater levels of tolerance with limited area over-
head. Accurate detection of multi-fault error scenarios is
difficult given that detection must occur within the current
clock cycle, inevitably affecting performance. Integration
with our HDL synthesis process and the sparse nature of
our output machine encodings allow delayed fault correc-
tion over multiple cycles using a novel decoding technique.

3.4.1 Non-local Redundancy

At the non-local level, redundancy is provided via a sec-
ondary staircase LDPC code over all local message and par-
ity bits. The density of this encoding directly affects the
overhead of the implementation, as well as the ability to
distinguish multi-bit fault conditions. While best results are
achieved when all local and non-local check functions are
used for distinguishing error scenarios, the logic complex-
ity of this approach is prohibitive for practical implementa-
tions. For instance, a design consisting of 33 bits of state
can draw from as many as 43 check functions when con-
structed for block sizes of 6. For this reason it is suitable to
use a subset of the available check functions thereby reduc-
ing logic complexity with decidable affects on distinguisha-
bility.

Initial exploration of this technique shows that it is possi-
ble to distinguish more than 99% of all 5-bit error possibili-
ties from all single error scenarios when all check functions
are considered. When only non-local check functions are
considered, the accuracy of distinguishing multi-bit error
scenarios drops buts is still well over 90% of 4-bit errors.

3.4.2 Sparse State Decoding

The resulting size of the ensemble of local blocks makes
direct decoding over the non-local state vector impracti-
cal. However, by observing that the resultant state spaces
are sparse and exhibit good distance, we can decode an er-
roneous state to its nearest codeword in a straightforward
manner. We proceed by generating relations for each bit us-
ing the known reachable states. By expressing each bit as
a function of the other bits in the state vector, we add yet
another layer of decoding logic. This logic can then be gen-
eralized to provide error correction by graduallyrelaxing
the input cube for each bit. By requiring that therelaxedin-
put cube does not overlap that of any other valid codeword,
we ensure that a deterministic decoding occurs.

Guaranteeing that the nearest codeword is always re-
turned is non-trivial, as this is directly affected by the
method in which the input cubes arerelaxed. We propose
an iterative approach which gradually expands the input
cubes. Figure 7 is a well known representation for repre-
senting distance between codewords; it additionally depicts
the process of gradually expanding the input cubes of code-
words. Unlike Hamming codes, these state codewords do
not exhibit uniform distance, making iterative expansion a
suitable solution. In this way we aim to provide fairness in
decoding by initially expanding cubes uniformly, while we
achieve greater coverage of the binary space by allowing
subsequent non-uniform expansion.

Clearly these input cubes have the potential to be both
large and complex, resulting in sizable delays. While this
technique cannot be applied directly to the input of the be-

Figure 7. Iterative relaxation of input cubes

havioral logic, as in local recovery, integration with our high
level synthesis process allows machine operation to be sus-
pended for multiple cycles while a valid codeword is recov-
ered. This is accomplished by using multi-bit error detec-
tion circuitry to prevent machine outputs from firing. The
machine is effectively held in a suspended state pending
successful recovery of the nearest valid state.

4 Implementation Results

ELLA is a dynamic-interleaved multi-threaded micro-
controller targeting low-latency applications [3]. The con-
trol specification comprises 44 PyPBS productions, with the
entire design consisting of 6,500 lines of synthesizable Ver-
ilog HDL. The control logic facilitates operation of the pro-
cessor pipeline, memory and peripheral interfaces, as well
mediation of conflicts arising from concurrent execution of
multiple threads using 33 state bits to represent the behav-
ioral NFA model.

The use of PyPBS as a specification language allows
for simple application of the fault tolerant techniques pre-
sented. State vector partitioning targets high performance,
maintaining message node degrees of two and local block
sizes no larger than six message bits. The resulting parti-
tioning consists of six partitions, adding 23 bits of overhead
to the implementation and increasing total logic depth by
only four levels of 2-input gates. Local fault tolerance pro-
vides detection and correction of error rates as high as six
errors per cycle given uniform distribution of errors among
blocks. Interleaved partitioning was also applied to the de-
sign, providing better coverage for multi-bit events resulting
from densely packed circuits.

By comparison, a Hamming code over the entire state
vector results in less overhead in terms of parity bits, requir-

ing only six additional bits. However, this approach results
in significant performance overhead, with parity logic func-
tions requiring as many as 17 inputs. Each of these logic
trees requires five levels of logic when implemented with 2-
input XOR gates, as compared to the two levels required by
our implementation. The complexity of each Hamming par-
ity function likely obviates the ability to merge behavioral
logic with parity encoding as is done in our LDPC tech-
nique. In addition to encoding overhead, the cost of fault de-
tection requires an additional set of XOR trees, while fault
identification requires binary decoding of the syndrome.
These levels of logic increase logic depth by eight for an
implementation using 2-input gates, bringing the total per-
formance delay to 14, more than three times that of our
technique. The total area overhead of a Hamming imple-
mentation comprises 390, 2-input gates- 93 gates for parity
functions and 99 gates for parity checking, with the remain-
ing 198 gates for decoding the syndrome and correcting the
error. Though our implementation adds over 500 gates to
the final implementation, it is important to note that only
89 of these are added to the logic front end, with the ma-
jority of logic delay being masked by the behavioral logic.
In a Hamming implementation, however, all logic overhead
adds to the total logic depth, thereby increasing the length
of any critical path.

A more direct comparison is possible with a multi-block
Hamming implementation. A comparable implementation
requires 23 parity bits to provide single local fault correc-
tion. The resulting logic depth for such an implementa-
tion adds six levels for XOR parity generation and check-
ing trees, with decoding and correction adding another three
levels. The resulting implementation is comparable in terms
state size, but comes in five gate levels slower than our
implementation. Partitioning for optimal Hamming block
sizes, such as (7,4) and (15,11), result in overheads of 26
and 12 bits respectively, with non-optimal block lengths re-
sulting in inefficiency in syndrome decoding. Both cases for
optimal Hamming lengths suffer from performance degra-
dation greater than that of our approach. The main dif-
ference between these techniques stems from the ability to
vary the complexity of decoding logic. Hamming imple-
mentations lie at one end of the spectrum, while our perfor-
mance targeted implementation lies at the other.

A comparable TMR implementation requires 3x area
overhead, with performance degradation coming from the
additional voting logic. While the added delay of voting
logic is less than that of the corresponding fault identifica-
tion and detection logic in our implementation, TMR re-
quires nearly three times the overhead in terms of state bits
and the corresponding logic dwarfs that of our implemen-
tation. The addition of triplicate voting negates any per-
formance advantage of TMR. Further, we believe the fault
coverage of our technique lends better to correction of mul-

tiple faults. The likelihood of faults occurring in different
blocks in our implementation is greater than that of faults
occurring in a single copy of a TMR implementation.

5 Conclusions

We have presented a novel technique for semi-automatic
generation of fault tolerant controllers capable of sustain-
ing constant error rates with minimal area and performance
overhead. We have additionally shown that through parti-
tioning and optimization it is possible to significantly in-
crease the effectiveness of this approach in terms of re-
coverable error rates, while simultaneously reducing logic
complexity. At a higher level, our non-local technique can
provide tolerance levels well in excess of conventional tech-
niques and integrates seamlessly with our high level synthe-
sis process, providing a range of designer-driven implemen-
tations that trade off fault tolerance levels with implementa-
tion overhead.

While our initial work has shown promising results, sub-
sequent work is necessary to explore additional applica-
tions. Identification of multi-bit error conditions remains a
challenging aspect of the approach; additional work is nec-
essary to identify an optimal strategy for selecting check
functions that maximize identification of multi-bit errors.
We believe that their may be potential in the use of non-
systematic LDPC codes rather than those employed herein.
The ability to integrate the encoding logic of such codes
with the behavioral logic may help reduce the obvious de-
lays inherent in such a scheme, decoding however, would
remain a challenge.

References

[1] R. G. Gallager. Low-density parity-check codes. InIRE
Transactions on Information Theory, pages 21–28, 1962.

[2] G. Hoover and F. Brewer. Pypbs design and methodologies.
In MEMOCODE ’05, 2005.

[3] G. Hoover, F. Brewer, and T. Sherwood. Ella: A multi-
threaded low latency processor for embedded systems. 2005.

[4] B. M. Leiner. Ldpc codes - a brief tutorial. 2005.
[5] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.

Spielman. Analysis of low density codes and improved de-
signs using irregular graphs. Inneed to get.

[6] R. E. Lyons and W. Vanderkulk. The use of triple-modular
redundancy to improve computer reliability.IBM Journal of
Resarch and Development 6(2), pages 200–209, 1962.

[7] D. J. MacKay.Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2003.

[8] T. J. Richardson and R. L. Urbanke. Efficient encoding of
low-density parity-check codes. pages 638–656, 2001.

[9] R. Rochet, R. Leveugle, and G. Saucier. Efficient synthesis
of fault-tolerant controllers. InThe European Design and
Test Conference (EDTC ’95), 1995.

[10] A. Shokrollahi. Ldpc codes: An introduction. 2003.

